On the difference between the revised Szeged index and the Wiener index

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the difference between the revised Szeged index and the Wiener index

Let Sz(G) and W (G) be the revised Szeged index and the Wiener index of a graph G. Chen, Li, and Liu [European J. Combin. 36 (2014) 237–246] proved that if G is a non-bipartite connected graph of order n ≥ 4, then Sz(G) −W (G) ≥ ( n + 4n− 6 ) /4. Using a matrix method we prove that if G is a non-bipartite graph of order n, size m, and girth g, then Sz(G)−W (G) ≥ n ( m− 3n 4 ) + P (g), where P i...

متن کامل

On the difference between the Szeged and the Wiener index

We prove a conjecture of Nadjafi-Arani et al. on the difference between the Szeged and the Wiener index of a graph (M. J. Nadjafi-Arani, H. Khodashenas, A. R. Ashrafi: Graphs whose Szeged and Wiener numbers differ by 4 and 5, Math. Comput. Modelling 55 (2012), 1644–1648). Namely, if G is a 2-connected non-complete graph on n vertices, then Sz (G) −W (G) ≥ 2n − 6. Furthermore, the equality is ob...

متن کامل

Improved bounds on the difference between the Szeged index and the Wiener index of graphs

Let W (G) and Sz(G) be the Wiener index and the Szeged index of a connected graph G. It is proved that if G is a connected bipartite graph of order n ≥ 4, size m ≥ n, and if ` is the length of a longest isometric cycle of G, then Sz(G) − W (G) ≥ n(m − n + ` − 2) + (`/2) − ` + 2`. It is also proved if G is a connected graph of order n ≥ 5 and girth g ≥ 5, then Sz(G) − W (G) ≥ PIv(G) − n(n − 1) +...

متن کامل

The quotients between the (revised) Szeged index and Wiener index of graphs

Let Sz(G), Sz(G) and W (G) be the Szeged index, revised Szeged index and Wiener index of a graph G. In this paper, the graphs with the fourth, fifth, sixth and seventh largest Wiener indices among all unicyclic graphs of order n > 10 are characterized; and the graphs with the first, second, third, and fourth largest Wiener indices among all bicyclic graphs are identified. Based on these results...

متن کامل

On the revised edge-Szeged index of graphs

The revised edge-Szeged index of a connected graph $G$ is defined as Sze*(G)=∑e=uv∊E(G)( (mu(e|G)+(m0(e|G)/2)(mv(e|G)+(m0(e|G)/2) ), where mu(e|G), mv(e|G) and m0(e|G) are, respectively, the number of edges of G lying closer to vertex u than to vertex v, the number of ed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2014

ISSN: 0012-365X

DOI: 10.1016/j.disc.2014.06.006